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In the present research study, we present the development of a model for characteriz-
ing and predicting the adsorption of polar molecules between two parallel plates based
on mean-field perturbation theory. The electrostatic forces between fluid–fluid mole-
cules in the slit shaped pore are modeled by considering permanent dipole–dipole inter-
actions and permanent dipole-induced dipole moment interactions. The intermolecular
potential for the electrostatic interactions was obtained by considering statistical aver-
ages over all possible orientations of the molecules. The proposed model is then used
to study the sorption of water molecules in the slit shaped pore and an explicit equa-
tion for the Helmholtz free energy of the pore phase fluid is derived. Adsorption iso-
therms for different pore sizes are simulated and the relative contributions of fluid–wall
and fluid–fluid interactions to the Helmholtz free energy are calculated as an illustra-
tion and compared with the results of existing models in the literature.

KEY WORDS: statistical mechanics, perturbation theory, averaging methods, adsorp-
tion modeling, nanopores
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1. Introduction

One of the most successful approaches to the study of liquids in recent
years relied on the development of perturbation theories. Their essential phys-
ical basis is the separation of the roles of attractive and repulsive intermolec-
ular forces. It is proposed that the structure of simple liquids, as revealed by
their radial distribution functions (RDFs), is chiefly determined by the packing
requirements of the molecules, which in turn reflects the repulsive intermolecular
forces [1–4]. The attractive forces are thought to serve essentially as the “glue”
that holds molecules together, maintaining the high density, but otherwise play-
ing no major structural role [1–4]. When the structures of hard sphere liquids
are compared with those of real monatomic liquids, close similarities are seen
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[1–4]. This suggests that the effects of the soft repulsive forces of real molecules
may be modeled with reasonable accuracy using a hard-sphere system. Notice
that the properties of hard-sphere systems are well known from computer simu-
lations as well as from statistical mechanical theories [1–4]. Furthermore, in the
formal development of perturbation theories, the effects of changes in the form
of the intermolecular potential on the properties of a system of molecules can be
studied in a transparent manner [1–4]. For pair wise–additive systems the pair
potential energy function is the sum of the reference potential, U0(r), and the
perturbation potential, U1(r) [1]:

U(r) = U0(r)+ U1(r). (1)

The properties of the system of molecules interacting through U0(r) are assumed
to be known, and those of the perturbed system are expressed in terms of
U1(r) and the properties of the reference system. For example, the configuration
energy, UN , for a system of N molecules interacting through U(r) may be writ-
ten (to first order in classical perturbation theory) as follows [1]:

UN = U 0
N + N2

2V

∫ ∞

0
4πr2g0(r)U1(r)dr, (2)

where U 0
N is the configuration energy of the reference system whose RDF is

g0(r), and V is the volume of the system. Similar expressions for other prop-
erties may also be written, and these are also quite easily calculated if g0(r) is
known [1]. Higher-order perturbation terms may also be added, but their cal-
culation is much more demanding, and the successful application of this theory
depends on the rapid convergence of the expansion [1]. This, in turn, will depend
on the choice of a reference system whose structure faithfully mimics that of the
system under study [1–4]. The success of this approach has thus rested on the
correct choice of the division of U(r) into reference and perturbation potentials
[1]. Notice, that the results of the first-order perturbation theory are found to be
sensitive to the choice of the hard-sphere diameter d [1]. Barker and Henderson
(described in [1–4]) considered the effect of temperature but not of density in the
proposed perturbation theory. They were able to calculate the first-order and sec-
ond-order perturbation terms, using computer simulation results. Furthermore,
calculations of the properties of Lennard–Jones liquids were found to be in very
good agreement with those obtained from direct computer simulation [1–4]. The
second-order term, though small, was found to be necessary to achieve an excel-
lent level of agreement. Week, Chandler, and Anderson have proposed a pertur-
bation theory based on a novel choice of reference and perturbation potentials
[1]. They assigned the whole repulsive region of U(r) to the role of the reference
potential and determinant of the structure, rather than just the positive portion
of U(r), as in the aforementioned Baker–Henderson theory. A consequence of
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this division is that the perturbation energy U1(r) is now a very smoothly vary-
ing function of r, and this has the useful effect of reducing the higher-order fluc-
tuation terms, thus giving a very accurate equation of state even when restricted
to a first- order treatment [1,2,4]. Due to their ability to predict liquid properties,
perturbation theories seem to be attractive to study gas–liquid phase transitions
in micro porous materials, especially to study the behavior of fluid molecules in
nano materials and sorption in micro porous materials [1,2,4].

Several efforts have been made to simulate adsorption isotherms and isos-
teric heats of adsorption using density functional and mean field theories for
non-polar compounds like Leonard–Jones fluids for both slit and cylindrical
shaped pores [5–9]. For the adsorption of polar compounds the general approach
is to use Monte–Carlo techniques, because of the presence of angle-dependent
electrostatic interactions [10,11]. However, Truskett et al. [12,13] and Giaya and
Thompson [14,15] proposed an analytical treatment of partition functions for the
water–slit pore system by including a hydrogen bonding term and by extend-
ing the model originally proposed by Schoen and Diestler [5]. However, their
approach requires the exact analytical expressions of RDFs at different densi-
ties and temperatures, which are not available in the literature for some polar
molecules. In order to overcome the difficulty of integrating the intermolecular
potential over all possible orientations of molecules, we use in the present study,
the method of averaging the orientation-dependent electrostatic intermolecular
potential terms over all possible molecular orientations in a spirit similar to the
one in [3]. In particular, the approximate intermolecular potential function that is
derived by statistical averaging is used in the context of the proposed mean-field
perturbation theoretical model presented here, and the electrostatic interactions
are explicitly computed. The model developed in the present study is then used
to predict the sorption of water confined in nanoslit-pores.

The paper is organized as follows. Section 2 introduces the proposed mean-
field perturbation approach and statistical averaging method associated with the
electrostatic molecular potential. In section 3, the resulting statistical-mechanical
model’s prediction of the adsorption isotherms, as well as isosteric heat of
adsorption of water molecules adsorbed in a nanoslit-pore domain are compared
with available results in the literature and the proposed method’s advantages/lim-
itations discussed.

2. Model development

Consider the fluid confined in the slit shaped pore of sz width shown in
figure 1.

From previous work [5,12–15] the Helmholtz free energy for the fluid con-
fined between two parallel plates is given by
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Figure 1. Side view of the slit pore model showing wall atoms and fluid molecules.

F = −β−1 ln

(
Z
(0)
N

N !λ3N

)
+ 〈U(1)〉0, (3)

where, 〈U(1)〉0 = 〈uff (r)〉 + 〈ufw(zi)〉, β = 1/kT is a Boltzmann factor, λ is the
thermal wave length, Z(0) is the configuration partition function for a confined
hard sphere fluid, (it is typically referred to as the configuration integral of the
reference system) and 〈uff (r)〉 and 〈ufw(zi)〉 are average potential energies asso-
ciated with the fluid–wall and fluid–fluid (electrostatic + dispersion) interactions,
respectively. Collectively, they are also called as the energy of the perturbation
from the reference system (〈U(1)〉0).

2.1. Energy of the reference system

A hard sphere fluid confined in a hard sphere slit shaped pore is consid-
ered as a reference system, in analogy with previous work [5,12–15]. Moreover,
the wall is considered to be smooth, that is, ignoring local variations on the wall
surface. First, we define the potential energy of the reference system U(0) as fol-
lows:

U(0) = 1
2

N∑
i=1

N∑
j �=1

uhs,ff (rij )+
N∑
i=1

uhs,fw(zi), (4)
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where the fluid–fluid interaction potential term of the hard sphere system is
defined as follows:

uhs,ff (rij ) =
{

0, rij > σf ,

∞ rij � σf
(5)

and the fluid–wall interaction potential term through the following expression:

uhs,fw(zi) =
{

0, σfw < zi < sz − σfw,

∞ zi � σfw or zi � sz − σfw.
(6)

In equation (5) rij ≡ ∥∥ri − rj
∥∥ is the distance between a pair of hard spheres

with centers located at ri and rj , σfw = (σf + σw)/2 is the distance between a
fluid molecule and a substrate atom in contact, and sz is the distance between
the walls of the pore (see figure 1). The configuration integral of the reference
system (Z(0)N ) can be approximated by (Z(0)1 )N , where, Z(0)1 is the effective single-
molecule configuration integral [2, 5]. We take Z(0)1 to be equal to the volume
accessible to any given molecule: A(sz − 2σfw)−Nb, where A is the area of the
wall and b = 2πσ 3

fw/3 is the volume excluded to one molecule by another [2, 5].
Hence, the reference system is thermodynamically characterized by:

Z
(0)
N = (A(sz − 2σfw)−Nb)N. (7)

2.2. Energy of the perturbation

The perturbation potential term is similarly given by the following expres-
sion:

U(1) = 1
2

N∑
i=1

N∑
j �=i

uff (rij )+
N∑
i=1

ufw(zi), (8)

where uff (rij ) is the total pair potential for fluid–fluid interactions which
includes terms for the dispersion force interaction as well as the direct electro-
static energies. The following equation for the fluid–fluid interactions for polar
molecules is used as developed in [16–18],

uff (rij ) =
[
− 1

(4πε0)2r
6
ij

(
3αiαj (Ii + Ij )

IiIj4

)]
+ γ, (9)

where Ii and Ij is the first ionization potential for molecule i and j , respectively,
ε0 is the electric permittivity of vacuum, and αi , αj is the average polarizability
of molecules i and j , respectively. The term γ accounts for the interactions due
to permanent dipole moments between two molecules, as well as induced dipole
and permanent dipole moments between the two molecules under consideration
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[3]. ufw(zi) is the fluid–wall intermolecular potential and is typically given by the
following expression [5, 12–15]:

ufw(zi) = −2πρwεfwσ 6
fw

3d

[
z−3
i + (sz − zi)

−3
]
, σfw < zi < sz − σfw. (10)

Here, εfw = (εf εw)
1/2, ρw is the aerial density of the solid substrate, and d is the

distance between two wall atoms. εf,εw and εfw are the fluid–fluid, wall–wall and
fluid–wall interaction parameters, respectively.

Notice that the term γ is given by the following expression [3]:

γ = uµµ + uµα. (11)

In particular:

uµµ = µiµj

r3
ij

g (12)

with µi , µj being the permanent dipole moments associated with molecules i
and j , respectively, and g = sin θi sin θj cosφij − 2 cos θi cos θj (where, θi and θj
are the angles between the molecular dipole moment vector and the line joining
the center of the two molecules i and j , respectively, as shown in figure 2).

Furthermore, the following quantities are given by [3]:

uµα = −1

r6
ij

(
αiµ

2
j (3 cos2 θj + 1)+ αjµ

2
i (3 cos2 θi + 1)

)
, (13)

γ = −µiµj
r3
ij

g − 1

r6
ij

(
αiµ

2
j (3 cos2 θj + 1)+ αjµ

2
i (3 cos2 θi + 1)

)
. (14)

2.3. Statistical averaging for the dipole–dipole intermolecular potential

The coordinate systems for two charge distributions representing molecules
i and j are shown in figure 2. In particular, one specific relative orientation is
shown and determined by the polar angles θi and θj , as well as the azimuthal
angle ϕij at a separation rij . Furthermore, we have chosen each z axis as the
direction of the dipole-moment vector µ.

The configuration integral Zµµ for the pair of molecules is given by [3]:

Zµµ = 1
16π2

∫
. . . .

∫
e−βuµµ dri drj dωi dωj , (15)

where dωi dωj = sin θi sin θj dθi dθj dφi dφj . Using the relative coordinates r =
ri − rj and φij = φi −φj , the configuration-space volume element can be written
as: dri drj dωi dωj = dri dr sin θi sin θj dθi dθj dφi dφij .
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Figure 2. Two static charge systems with z axes in the direction of the dipole moments and
separated by distance r between the centers of mass [3].

Notice that the multiple integrals in Zµµ over dri and dφi give V and 2π ,
respectively, and therefore:

Zµµ = V

8π

∫ ∫
e−βuµµdr dω, (16)

where dω = sin θi sin θj dθi dθj dφij .
Let ςµµ be the phase integral for the angular coordinates of a pair of mol-

ecules:

ςµµ = 1
8π

∫
e−βuµµdω. (17)

If we now define a function by ςe ≡ e−βγ1 , where γ1 is an angle-averaged energy
function, we can replace an angle-dependent pair-potential energy function uµµ
(r, θi , θj , θij ) by the angle-independent function uµµ(r, T ). Indeed, equation (16)
can be written as follows:

Zµµ = V

∫
e−βγ1dr. (18)

Note that ςµµ and γ1 are functions of r and T . The term e−βγ1 plays the role
of an apparent Boltzmann factor. Furthermore, γ1 is actually a Helmholtz free
energy term of orientation for the molecular pair. From its definition γ1 is cal-
culated by:

γ1 = − 1
β

ln ςµµ = −kT ln
(

1
8π

∫
e−βuµµdω

)
, (19)
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where,

uµµ = µiµj

r3
ij

g (20)

and g = sin θi sin θj cosφij − 2 cos θi cos θj .
It can be shown that when the temperature is not too low, for example,

T > 100 K for µ � 2D or T > 200 K for µ � 3D, the infinite series expan-
sion of the above exponential function converges rapidly and hence [3]:

ςµµ = 1
8π

∫ (
1 − µiµj

r3
ij

βg + µ2
i µ

2
j

2r6
ij

β2g2 − · · ·
)

dω. (21)

The integration is over the three variables present in g, namely: θa ∈ [0, π ], θb ∈
[0, π ], and φij ∈ [0, 2π ]. The following integration results hold true:

∫
dω = 8π

∫
g dω = 0

∫
g2 dω = 16

3
π

∫
g3 dω = 0.

In the light of the above integration results, a term by term integration of the
uniformly convergent series in equation (21) yields:

ςµµ = 1 + µ2
i µ

2
jβ

2

3r6
ij

+ · · · (22)

Note that γ , the free energy averaged potential for dipole–dipole interactions,
can be obtained by substituting equation (22) into (19):

γ1 = −kT ln

(
1 + µ2

i µ
2
jβ

2

3r6
ij

+ · · ·
)

(23)

which can be further approximated as follows:

γ1 = uµµ ≈ − µ2
i µ

2
j

3kT r6
ij

, (24)

whenever the argument|µiµj/kT r3
ij | 	 1, namely in a regime where T > 300 K

and µi , µj < 3D.
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2.4. Dipole–induced dipole moment interactions

Let us now consider the potential term associated with the dipole-induced
dipole moment interactions:

uµα = −1

r6
ij

(
αiµ

2
j (3 cos2 θj + 1)+ αjµ

2
i (3 cos2 θi + 1)

)
. (25)

After carrying out the aforementioned statistical averaging method, in a similar
way as before, one obtains an expression for the corresponding energy terms. In
particular, one obtains:

uµα ≈ −
(
µ2
i αj − µ2

jαi

r6
ij

)
. (26)

Combining equations (11), (24) and (26) the following equation can be derived:

γ = − µ2
i µ

2
j

3kT r6
ij

− µ2
i αj

r6
ij

− µ2
jαi

r6
ij

, (27)

where, µi , µj are the permanent dipole moments associated with molecule i and
molecule j , and αi , αj is the respective average polarizability. For the same kind
of molecule i = j , (dropping subscripts and combining equations (9) and (27)),
we have:

uff (r) =
[
− 1
(4πε0)2r6

(
3α2I

4

)]
− 1
r6

(
µ4

3kT
+ 2µ2α

)
. (28)

Note that [5,12–15]:

〈uff (r)〉 = 1
2

∫
V

dr1

∫
V

dr2g(r1, r2)ρ
(1)
0 (r1)ρ

(1)
0 (r2)ua,ff (rij ). (29)

We now seek an equation of state under the mean-field assumption, ignoring in-
termolecular correlations and setting [5,12–15]:

g(r1, r2) =
{

0, r12 < σf ,

1, r12 � σf ,
(30)

Furthermore, assuming that the fluid of interest is homogeneous throughout the
pore volume, we can approximate the local density by [5,12–15]:

ρ
(1)
0 (r1) = ρ

(1)
0 (r2) = ρp = N

A(sz − 2σfw)
. (31)

Using the approximations in equations (30) and (31), the volume integral in
equation (29) can be readily simplified and become an one-dimensional integral.
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By substituting equation (28) into (29) and transforming the integration variables
in the double integral in equation (29) from {r1, r2} to {r1, r12}, we have:

〈uff (r)〉 = ap1

A(sz − 2σfw)

∫
V

dr1

∫
V

dr12g(r12)r
−6
12 (32)

= ap1

(sz − 2σfw)

∫ sz−σfw

σfw

dz1

∫
−

V (z1)

dr12r
−6
12 (33)

= 2πap1

(sz − 2σfw)

∫ sz−σfw

σfw

dz1

{∫
dz
∫

dρρ(z2 + ρ2)
−3}

−
V (z1)

, (34)

where

ap1 = 1
(4πε0)2

[(
2µ4

3kT

)
+ 2µ2α +

(
3α2I

4

)]
(35)

and −
V (z1)

denotes the z1-dependent volume restricted by hard cores of fluid mol-
ecules and by the hard walls. Note that, for sz > 2 (σfw + σf ), the integration
on z1 breaks down into three ranges: (1) σfw < z1 < σf , (2) σfw + σf < z1 <

sz − (σfw + σf ), and (3) sz − (σfw + σf ) < z1 < sz − σfw. [5].
In turn, the integrations on z and ρ can be broken into either two or

three regions within each range of z1.Thus 〈uff (r)〉 splits into three contributions
〈uff (r)〉 = a1 + a2 + a3. First note that, by symmetry a1 = a3

For a1, one obtains:

a1 = a3 = 2πap1

(sz − 2σfw)

∫ σfw+σf

σfw

dz1

×
{∫ σf

−z1+σfw
dz
∫ ∞
√
σ 2
f−z2

dρρ
(z2+ρ2)3

+
∫ sz−σfw−z1

σf

dz
∫ ∞

0

dρρ
(z2+ρ2)3

}
(36)

= 2πap1

(sz − 2σfw)

{
11

24σ 2
f

− 1
24

[
1

(sz − 2σfw − σf )2
− 1
(sz − 2σfw)2

]}
. (37)
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In a similar fashion we obtain,

a2 = 2πap1

(sz − 2σfw)

∫ sz−σfw−σf

σfw+σf
dz1

{∫ −σf

−z1+σfw
dz
∫ ∞

0

dρρ
(z2 + ρ2)3

+
∫ σf

−σf
dz
∫ ∞
√
σ 2
f−z2

dρρ
(z2 + ρ2)2

+
∫ sz−z1−σfw

σf

dz
∫ ∞

0

dρρ
(z2 + ρ2)3

}
(38)

= 4πap1

(sz − 2σfw)

{
1

3σ 3
f

[sz − 2σfw − 2σf ] + 1
24

[
1

(sz − 2σfw − σf )2
− 1

σ 2
f

]}
. (39)

Combining equations (36), (39), and (29) yields:

〈uff (r)〉 = −2apρpN, (40)

where:

ap = 4πap1

3σ 3
f (sz − 2σfw)

[
−3

2
σf + 2(sz − 2σfw)+ σ 3

f

4(sz − 2σfw)2

]
. (41)

2.5. Fluid–wall interactions

Consider equation (10) for the potential term associated with the fluid–wall
interactions. The average fluid–wall interactions can be given by the following
integral [5,12–15]:

〈ufw(zi)〉 =
∫
V

dr1ρ
(1)
0 (r1)ua,fw(z1). (42)

One can approximate the integral in (42) using (31) as follows:

〈ufw(zi)〉 = 2πρwεfwσ 6
fwρpA

3d

∫ sz−σfw

σfw

[
z−3
i + (sz− zi)

−3
]

dz (43)

= 2πρwεfwσ 6
fwρpA

3d

(
sz(sz − 2σfw)

(sz − σfw)2σ
2
fw

)
, (44)

〈ufw(zi)〉 = ψ(ξ) = 2Nπρwεfwσ 3
fw

3d(ξ − 2)

[
1

(ξ − 1)2
− 1

]
, ξ > 2, (45)

where, ξ = sz

σfw
.
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Note that equations (8)–(13) now yield

〈U(1)〉0 = 〈uff (r)〉 + 〈ufw(zi)〉, (46)

〈U(1)〉0 = ψ(ξ)N − 2Napρp. (47)

Finally, substituting equations (7) and (47) into equation (3), one obtains the fol-
lowing expression for the Helmholtz free energy:

F = −β−1
{
N ln

[
1 − bρp

ρpλ3

]
+N

}
+Nψ(ξ)− 2apNρp. (48)

2.6. Determination of equilibrium pore density

At equilibrium the following equation must be satisfied:

µb(T , ρb)− µP (T , ρP ) = 0, (49)

where µb(T , ρb) and µP (T , ρP ) are the chemical potential for the bulk phase and
the pore phase respectively. They can be calculated using equation (48) for the
Helmholtz free energy as follows:

µP (T , ρP ) =
(
∂F

∂N

)
T ,A,sz

= β−1 ln
(
λ3ρP

1 − bρp

)
+ β−1bρp

1 − bρP
+ ψ(ξ)− 2aP (ξ)ρP ,

(50)

µb(T , ρb) = lim
ξ→0

µP (T , ρP ) = β−1 ln
(
λ3ρb

1 − bρb

)
+ β−1bρb

1 − bρb
− 2abρb, (51)

where

ab = 4πap1

3σ 3
f

. (52)

Equation (49) is a (non-linear) algebraic equation with unknown equilibrium
pore density, keeping all other thermodynamic variables fixed. In the case of
multiple real positive roots, the density value that minimizes the excess grand
potential per unit wall area is typically selected, since it corresponds to the ther-
modynamically stable phase in the pores. It should be also emphasized (and will
become clear in the next section) that the proposed statistical mechanics frame-
work allows an insightful sensitivity analysis to be performed on the effect of
parameters such as pore size and fluid–wall interaction parameter on the den-
sity of the confined phase and its thermodynamic stability. Furthermore, within
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the context of the present study, issues pertaining to the structural characteristics
of the corresponding liquid–vapor phase diagram as the above parameters vary
can also be naturally addressed, since they are critically linked to any adsorbent
design method.

3. Results and discussion

3.1. Pore filling

Figure 3(a) shows the adsorption isotherms at 298 K and a fixed value
of the fluid–wall interaction parameter for different pore sizes. The vertical
lines are drawn for guiding eyes. The pressure at which gas to liquid transi-
tion (pore filling) takes place decreases as the pore size decreases. Figure 3(b)
shows the isotherms before the pore–filling takes place which are not seen clearly
in figure 3(a). The pore density increases with decrease in pore sizes due to
increased fluid–wall interactions. For 20, 25, and 30 Å pore sizes, the pore den-
sity after pore filling is close the density of liquid water, suggesting the capillary
condensation takes place in the pores while in case of 15 and 18 Å pores the pore
densities are between water vapor and liquid water. This can be explained by
studying the magnitudes of the electrostatic interactions at different pore sizes.

The pore filling phenomena can be interpreted by studying the relative con-
tributions of the fluid–fluid and fluid–wall interactions over the entire operating
pressure range. The contributions as a function of operating bulk pressure are
shown in figure 4 for 20 Å pores. The fluid–fluid interactions are split into two
parts namely electrostatic and dispersion interactions. The results in figure 4 sug-
gest that the fluid–wall interactions dominate over fluid–fluid interactions before
pore filling takes place, but after pore filling by the liquid phase, the fluid–fluid
interactions dominate due to strong electrostatic interactions attributed to the
polar nature of water molecules.

The relative contributions of fluid–fluid and fluid–wall interactions at differ-
ent pore sizes are shown in figure 5(a,b) at two different external pressures.
figure 5(a) shows these values for conditions that result in capillary condensa-
tion of a liquid-like fluid. The results show that after pore filling the dispersion
energy and the electrostatic energy increase with increase in the pore size. Figure
5(b) shows values for a vapor-like confined fluid. The results in figure 5(a) show
that the electrostatic interaction energy increases as pore size increases, which
is attributed to the orientation-dependent electrostatic interactions. The small
pore size restricts the mobility of molecules in the pore, and hence the hydro-
gen bonds between water molecules get disrupted. Results in figure 5(b) show
that as the monolayer forms the electrostatic and dispersion interactions increase



338 R.R. Kotdawala et al. / An application of mean-field perturbation theory

0

200

400

600

800

1000

1200

0 0.5 11 .5 2 2.5 3 3.5

P,kpa

P
o

re
 d

e
n

s
it

y
, 
K

g
/m

3

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2

P, kpa

P
o

re
 d

en
si

ty
,k

g
/m

3

(b)

(a)

Figure 3. (a) Pore density of water molecules as a function of bulk pressure for water adsorbed in
slit pores at 298 K and εfw = 0.66 kJ/mol. Results shown for pores of width 16 (�), 18 (�), 20 (•),
25 (×) and 30 (�) Å. (b) Pore densities of water molecules before pore filling by capillary condensa-
tion takes place at 298 K and εfw = 0.66 kJ/mol. Results shown for pores of width 16 (�), 18 (�),

20 (•), 25 (×) and 30 (�) Å.

with decrease in pore size due to neighboring molecules in the monolayer. This
is attributed to an increase in the fluid–wall interactions which result in comple-
tion of monolayer formation at relatively low pressure.
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Figure 4. Relative magnitudes of the fluid–fluid electrostatic (�), fluid–fluid dispersion (�), and
fluid–wall interactions (�). Helmholtz free energy as a function of bulk pressure for 20 Å pore width

at 298 K and εfw = 0.66 kJ/mol.

3.2. Gas phase heat of adsorption

The isosteric heat of adsorption, qst , is the heat released (per mole) on
transferring an infinitesimally small amount of the adsorbate from the coexisting
bulk gas phase to the adsorbed phase at constant temperature, pressure (con-
stant adsorption loading), surface area A, and pore width H . As defined, qst ,
can be related to entropies (S), internal energies (U ), and volumes (V ) of the two
phases by Balbuena and Gubbins [8]:

qst = T (S(g) − S(a)) = U(g) − U(a) + P(V (g) − V (a)), (53)

where the subscripts (a) and (g) refer to the values for the adsorbed and bulk
gas phases, respectively. The isosteric heat obeys the Clapeyron equation:

(
dP
dT

)
A,sz,�

= S(g) − S(a)

V (g) − V (a)
, (54)

where P is the pressure of the bulk gas phase in equilibrium with the adsorbed
phase, and the derivative on the left hand side of the equation is taken at con-
stant adsorption levels, �. If we further assume that V (a) 	 V (g) and the ideal
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Figure 5. (a) Fluid–wall (•), fluid–fluid electrostatic (�), fluid–fluid dispersion (•) and total fluid–
fluid, dispersion + electrostatic (�) interaction energy as a function of pore sizes at 3.1 kpa, 298 K and
εfw = 0.66 kJ/mol. The fluid is liquid-like at these conditions. (b) Fluid–fluid electrostatic (�), fluid–
fluid dispersion (•) and total fluid–fluid, dispersion + electrostatic (�) interaction energy as a function
of pore sizes at 0.7 kpa, 298 K and εfw = 0.66 kJ/mol. The fluid is vapor-like at these conditions.



R.R. Kotdawala et al. / An application of mean-field perturbation theory 341

gas law holds for the coexisting gas phase so that V (g)−V (a) ≈ RT /P then, with
this approximation, and combining equations (53) and (54), we have [8]:

(
d lnP

dT

)
�,A,H

= qst

RT 2
. (55)

Over small temperature intervals it is usually possible to neglect the temperature
dependence of qst so that equation (55) can be integrated to give:

(lnP)� =
(−qst
RT

)
+ constant. (56)

We used equation (56) to calculate the isosteric heat of adsorption.
Figure 6(a) shows the isosteric heat of adsorption at different pore sizes at low
surface coverage, i.e., the number of adsorbed molecules per square nanometer of
pore surface. The results in figure 6(a) show that the heat of adsorption increases
linearly, but modestly, with surface coverage, which is attributed to increased
fluid–wall interactions. The results in figure 6(b) show the heat of adsorption at
somewhat higher loadings where fluid–fluid interactions are more important than
fluid–wall interactions. At high loadings, the heat of adsorption increases as pore
size increases from 11 to 35 Å, because of increased hydrogen bonding between
water molecules, although on the vertical scale the differences are modest.

3.3. Comparison with the results of Monte–Carlo simulations (Striolo et al.[10])

The simulated isotherms for 10, 16, and 20 Å slit-pores are compared with
results of Striolo et al. [10] in figure 7. The simulation results are noted to be
quite close in agreement with the Monte–Carlo simulations, both in the transi-
tion pressures and the loadings at higher pressures. The small deviations in pore
densities after the transition pressure might be due to the approximation of the
RDFs. The simulated pore densities before pore filling are in excellent agreement
with the Monte–Carlo simulation results presented in [10], because the RDF val-
ues used were more accurate for water vapor.

Figure 8 shows the comparisons of the simulated isosteric heats of adsorp-
tion at low coverages, which are in excellent agreement with Striolo’s Monte–
Carlo results. Deviations were observed in the predicted isosteric heats of
adsorption at high coverages, shown in figure 9, and might be attributed to the
approximation of RDFs at higher densities.

4. Conclusions

The perturbation theory proposed by Schoen and Diestler [5] was extended
by including the electrostatic interactions in the configuration integral. The
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Figure 6. (a) Isosteric heat of adsorption at low surface coverage (number of water molecules
adsorbed per nm2 of pore surface) for pore width of 11 (�), 15 (�), 20 (•), 25 (�) and 30 (×) Å.
(b) Isosteric heat of adsorption at high surface coverage (number of water molecules adsorbed per

nm2 of pore surface) for pore width of 11 (�), 15 (�), 20 (•), 25 (�), and 30 (×) Å.

angular orientation-dependent electrostatic intermolecular potential was approx-
imated by averaging it over all molecular orientations. This change enabled the
model to simulate the thermodynamic properties of polar molecules confined in
the nanoporous materials. The simulated isotherms and isosteric heats of adsorp-
tion of water in nanoslit-pores are in good agreement with the results obtained
by Striolo et al. [10] using Monte–Carlo simulations.
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Figure 7. Comparison of simulated surface coverage as a function of bulk pressure (small symbols)
with the results of Striolo et al. [10] (large symbols) for pore sizes of 10 (�), 16 (�), and 20 (�) Å

at 298 K and εfw = 0.336 kJ/mol.
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symbols) with the results of Striolo et al. [10] (large symbols) for pore sizes of 10 (�), 16 (�), and

20 (�) Å at 298 K and εfw = 0.336 kJ/mol.
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Figure 9. Comparision of simulated heat of adsorption as a function of high surface coverage
(small symbols) with the results of Striolo et al. [10] (large symbols) for pore sizes of 10 (�), 16

(�), and 20 (�) Å at 298 K and εfw = 0.336 kJ/mol.
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